Chapter 5 Questions
Electrical Charges

1. Opposite charges attract repel each other. (circle one)
2. Like charges attract/repef) each other. (circle one)

Name: \qquad

3. The following experiment is set up using charged spheres.

Spheres A and D are then set up side by side, as well as spheres B \& D. Which diagram below correctly shows what would happen?
A)

B)

D)

4. If A is positively charged, what is the charge of C ?

5. Based on the electrostatic series, (found on the next page) if silk is rubbed on a glass rod - which one is gaining electrons? silk would gain electrons,
and get a negative charge
(B) The cotton cloth would become negatively charged
C) The cotton cloth would become positively charged
D) The glass window \& cotton cloth would stay neutrally charged

Electrostatic Series	
TENDENCY	SUBSTANCE
Acquire a Negative Charge	Rubber
	Ebonite Polyethylene (Plastic) Cotton Silk Acquire a Positive Charge

Ohm's Law, Electrical Power \& Energy Consumed Questions

1. What units are used for the following variables?

I - Current Intensity $\operatorname{amps}(A)$
V - Potential Difference $V O(t S(\mathrm{~V})$
R - Resistance Ohms (Ω
P - Electrical Power Watts or trilounatfs
E - Electrical Energy joules or m/h or $+6 \omega / h$
\qquad
T- time SeSS(when E is joules) or hours (when E is in

$$
\begin{aligned}
& P=6 \mathrm{KW} \xrightarrow{2000} 6000 \mathrm{~W} \quad E=P \cdot t \\
& t=20 \mathrm{mins} \xrightarrow{-60} \longrightarrow 0.33 \mathrm{~h} \\
& \begin{array}{l}
=6000 \mathrm{w} \cdot 0.33 \mathrm{~h} \\
=\frac{1980 \mathrm{w} / \mathrm{h}}{} \\
=1
\end{array} \\
& E=\text { 3. } \mathrm{Ac} \omega \mathrm{~h} / \mathrm{h}
\end{aligned}
$$

3. 'A circuit consists of a 21 V battery connected across a single resistor. If the current in the circuit is 3 A , calculate the size of the resistor (calculate the resistance).

$$
\begin{array}{ll}
V=21 \mathrm{~V} & R=\frac{v}{I} \quad R=\frac{21 \mathrm{~V}}{3 \mathrm{~A}} \quad R=7 \Omega \\
I=3 \mathrm{~A} & R= \\
R=? \Omega &
\end{array}
$$

4. A 20 -volt relay has a coil resistance of 200 ohms. How much current does it draw?

$$
\begin{array}{lll}
V=20 \mathrm{~V} \\
R=200 \Omega & I=\frac{V}{R} & I=\frac{20 \mathrm{~V}}{200 \Omega} \quad I=0.1 \mathrm{~A}
\end{array}
$$

5. A 500W appliance is turned on for 180 minutes. How much energy in watt-hour was used by the

$$
\begin{aligned}
& P=500 \mathrm{appliance} ? \\
& t=180 \mathrm{mins} \stackrel{-100}{\rightarrow} \underline{3} \mathrm{~h}
\end{aligned}
$$

$$
\dot{E}=? \omega / h
$$

$$
\begin{aligned}
E & =P \cdot t \\
& =500 \mathrm{w} \cdot 3 \mathrm{~h} \\
& =1500 \mathrm{w} / \mathrm{h}
\end{aligned}
$$

6. A transformer is connected to 120 volts. Find the current if the resistance is 480 -ohms

$$
\begin{array}{lll}
V=120 \mathrm{~V} \\
R=480 \Omega & I=\frac{\mathrm{V}}{R} \quad I=\frac{120 \mathrm{~V}}{480 \Omega} \quad I=0.25 \mathrm{~A}
\end{array}
$$

$$
I=? A
$$

7. The price of electricity in Quebec is approximately $\$ 0.07$ per $\mathrm{kW} \cdot \mathrm{h}$. A student turns on a 60 watt light bulb for 7 hours every day for 30 days. What will be the monthly electric bill for the light

$$
\begin{aligned}
P=60 \mathrm{w} \xrightarrow{\circ} \rightarrow 0.06 \mathrm{~kW} & =P \cdot t \\
t & =7 \mathrm{~h} \\
\text { for } 30 \text { days } & =0.06 \mathrm{~kW} \cdot 210 \mathrm{~h} \\
& =12.6 \mathrm{~kW} / \mathrm{h}
\end{aligned}
$$

Circuits

1. What are the three elements a circuit needs for it to work?

- lowespiply (battery)

2. Draw a series circuit with two batteries and three light bulbs.

3. Draw a parallel circuit with one battery and three light bulbs.

4. Draw a circuit that includes two batteries, one light bulb, an ammeter and a voltmeter finding the potential difference of the light bulb.
5. Which way do electrons travel in a circuit?
6. Which way is conventional current direction?

7. State whether the motor will work in the circuit below in the following situations:
a) Switch A is on, Switch B is off, the motor is \qquad working
b) Switch A is on, Switch B is on, the motor is \qquad WOrking
c) Switch A is off, Switch B isoff, the motor is \qquad not working
d) Switch A is off, Switch B is on, the motor is not working
8. Which bulbs will turn on if switch A is closed and switch B is open?

9. Which bulbs will turn on if switch A is open and switch B is closed?
Bulb 4 iX

Magnets

1. Like poles attractrepeleach other \& Opposite poles ttractrepel each other.
2. Each magnet has 2 poles, a north pole and a SOuTh pole.
3. Draw the magnetic field lines of the following:

b)

4. Where would the compass' be pointing if placed in the following locations near the magnets?
a)
b)

5. Which way is the current flowing on the following?
a)

b)

