Science Practice Exam

 Chapters 5 and 14 ANSWERS1. A
2. A
3. C
4. B
5. A
6. C
7. D
8. D
9. A
10. C
11. A
12. B
13. B
14. B
15. B
16. $\mathrm{V}=12 \mathrm{v}$

$$
R=4 \Omega \quad I=?
$$

$\mathrm{I}=\frac{V}{R}$
$\mathrm{I}=\frac{12 v}{4 \Omega}$
$\mathrm{I}=3 \mathrm{amps}$
The current intensity is $\mathbf{3} \mathbf{a m p s}$.
17.

18. $\mathrm{E}=900 \mathrm{~kJ} \times 1000=900000 \mathrm{~J}$
$t=45$ minutes $\times 60=2700$ seconds
$P=$?
$\mathrm{P}=\frac{E}{t}$
$P=\frac{900000 \mathrm{~J}}{2700 \mathrm{~s}}$
$P=333.33$ watts
The electrical power of this appliance is 333.33 watts.
19. Conventional current flows from positive to negative.
20. $P=2000 \mathrm{~W} \div 1000=2 \mathrm{~kW}$
$t=4$ hours
$\mathrm{E}=$?
$\mathrm{E}=\mathrm{P} \cdot \mathrm{t}$
$\mathrm{E}=2 \mathrm{~kW} \cdot 4 \mathrm{~h}$
$\mathrm{E}=8 \mathrm{~kW} \cdot \mathrm{~h}$
The energy used is $\mathbf{8} \mathbf{k W} \cdot \mathrm{h}$
21. When a glass rod and silk are rubbed together, electrons travel from the glass rod to the silk. The glass has lost electrons giving it a positive charge and the silk has gained electrons (from the glass) leaving the silk with a negative charge.
22. $I=300 \mathrm{~mA} \div 1000=0.3 \mathrm{~A}$
$R=100 \Omega$
$\mathrm{V}=$?
$V=I \cdot R$
$V=0.3 \mathrm{~A} \cdot 100 \Omega$
$\mathrm{V}=30$ volts
The voltage of the power supply is $\mathbf{3 0}$ volts.
23. $P=250 w$
$\mathrm{t}=30$ mins $\mathrm{x} 60=1800$ seconds.
$\mathrm{E}=$?
$\mathrm{E}=\mathrm{P} \cdot \mathrm{t}$
$\mathrm{E}=250 \mathrm{w} \cdot 1800 \mathrm{~s}$
$\mathrm{E}=450000 \mathrm{~J}$
$\mathrm{E}=450000 \mathrm{~J} \div 1000$
$\mathrm{E}=450 \mathrm{~kJ} \times 30$ days $=13500 \mathrm{~kJ}$
13500 kJ of energy will be consumed in one month.
24. $R=50 \Omega$
$\mathrm{V}=120 \mathrm{~V}$
$P=$?
$\mathrm{I}=\frac{V}{R} \quad \mathrm{I}=\frac{120 \mathrm{v}}{50 \Omega} \quad \mathrm{I}=2.4 \mathrm{amps}$
$P=V \cdot I \quad P=120 v \cdot 2.4 \mathrm{~A} \quad P=288$ watts
The power is 288 watts.
25. A) $V=220 \mathrm{v} \quad \mathrm{R}=30 \Omega$
$\mathrm{T}=15$ mins or 900 seconds or 0.25 hours
$I=\frac{V}{R} \quad I=\frac{220 v}{30 \Omega} \quad I=7.33 \mathrm{amps}$
$\mathrm{P}=\mathrm{V} \cdot \mathrm{I} \quad \mathrm{P}=220 \mathrm{v} \cdot 7.33 \mathrm{~A} \quad \mathrm{P}=1612.6 \mathrm{w}$
$E=P \cdot t \quad E=1612.6 \mathrm{w} \times 900 \mathrm{~s} \quad E=1451340 \mathrm{~J}$
The coffee maker used 1451340 J of energy.
b) $E=P \cdot t$
$\mathrm{E}=1.6126 \mathrm{~kW} \cdot 0.25 \mathrm{~h}$
$\mathrm{E}=0.40315 \mathrm{~kW} \cdot \mathrm{~h} x \$ 0.05=0.02$
0.02×365 days $=7.30$
It would cost $\$ 7.30$ to run the coffee maker for a year.

