		Science P	Science Practice Exam	
		Chapters 5 a	Chapters 5 and 14 ANSWERS	
1.	А	6. A	11. C	
2.	В	7. A	12. C	
3.	D	8. D	13. A	
4.	С	9. A	14. B	
5.	В	10. B	15. B	

16. V = 12 v
$$R = 4 \Omega$$

$$I = \frac{V}{R}$$
$$I = \frac{12 v}{4 \Omega}$$
$$I = 3 \text{ amps}$$

The current intensity is 3 amps.

| = ?

- 18. E = 900 kJ x 1000 = 900 000 J t = 45 minutes x 60 = 2700 seconds P = ?
 - $P = \frac{E}{t}$ $P = \frac{900\ 000\ J}{2700\ s}$ $P = 333.33\ watts$

The electrical power of this appliance is 333.33 watts.

- 19. Conventional current flows from positive to negative.
- 20. P = 2000 W ÷ 1000 = 2 kW t = 4 hours E = ? E = P·t
 - E = 2 kW · 4 h E = 8 kW∙h
 - The energy used is 8 kW·h
- 21. When a glass rod and silk are rubbed together, electrons travel from the glass rod to the silk. The glass has lost electrons giving it a positive charge and the silk has gained electrons (from the glass) leaving the silk with a negative charge.

22. I = 300 mA ÷ 1000 = 0.3 A R = 100 Ω V = ?
V = I·R V = 0.3 A · 100 Ω V = 30 volts The voltage of the power supply is 30 volts.
23. P = 250 w

E = P·t E = 250 w · 1800 s E = 450 000 J

E = 450 000 J ÷ 1000 E = 450 kJ x 30 days = 13 500 kJ

13 500 kJ of energy will be consumed in one month.

24. R = 50 Ω
V = 120 V
P = ?

$$I = \frac{V}{R}$$
 I = $\frac{120 v}{50 \Omega}$ I = 2.4 amps
P = V·I P = 120v · 2.4 A P = 288 watts
The power is 288 watts.

25. A) V = 220 v R = 30 Ω T = 15 mins or 900 seconds or 0.25 hours

 $I = \frac{V}{R} \qquad I = \frac{220 v}{30 \Omega} \qquad I = 7.33 \text{ amps}$ $P = V \cdot I \qquad P = 220 v \cdot 7.33 \text{ A} \qquad P = 1612.6 w$ $E = P \cdot t \qquad E = 1612.6 \text{ w x } 900 \text{ s} \qquad E = 1451340 \text{ J}$ The coffee maker used 1 451 340 J of energy.

b) E = P·t
E = 1.6126 kW ⋅ 0.25h
E = 0.40315 kW⋅h x \$0.05 = 0.02
0.02x 365 days = 7.30

It would cost \$7.30 to run the coffee maker for a year.