\qquad
\qquad Date: \qquad Concept evaluations by chapter

CHAPTER 2 ANSWER KEY

Molecules and solutions

1. Do the following chemical formulas represent atoms or molecules?

a) Ba	Atom	e) HNO_{2}	Molecule
b) N_{2}	Molecule	f) Ag	Atom
c) P_{4}	Molecule	g) Hg	Atom
d) NaNO_{3}	Molecule	h) Co	Atom

2. How many protons and electrons does each of the following ions have?
a) $\mathrm{Cr}^{3+} 24$ protons and 21 electrons
b) $\mathrm{Si}^{4-} 14$ protons and 18 electrons
c) $\mathrm{Hg}^{2+} 80$ protons and 78 electrons
d) $\mathrm{Br}^{-} 35$ protons and 36 electrons
3. Write the chemical symbol and the charge of each of the ions below.
a)

b)

c)

B^{3+}
\qquad
4. To make sure they understand the concepts they have learned in science class, Jessica and Fiona have made up questions based on information from reliable websites and posted them on their own website. Jessica found this table on solubility.

Chemical formula	State at $\mathbf{2 0}^{\circ} \mathbf{C}$	Solubility in water at $\mathbf{2 0}^{\circ} \mathbf{C}$ $(\mathbf{g} / \mathbf{L})$
N_{2}	Gas	0.02
O_{2}	Gas	0.04
CO_{2}	Gas	0.16
CQ	Gas	0.26
O_{3}	Gas	0.57
CaCO_{3}	Solid	0.0153
CaCl_{2}	Solid	425

The girls prepared the following questions about his table:
a) We learned from a sciende program on te vision that the sea naturally counteracts the greenhouse effect. Can yod explain how the sea does this?

b) Bottled water is sometime ozonized. What is the maximum amount of ozone $\left(\mathrm{O}_{3}\right)$, expressed in grams, that can be dissolved an 18-L bottle of water?

The maximuph amount of ozone that can be dissolved in an 18 -L bottle of water is 10.26 g .
c) Hero is the puzzle of the week. Explain the following fact: e sea contains the greater part of all the hydrogen on Earth. However, hydrogen does not figure in this table.
The sea is made up of water $\left(\mathrm{H}_{2} \mathrm{O}\right)$ and therefore contains an enormous mount of hydrogen,
but very little in dissolved form because the solubility of hydrogen gas is very w.
\qquad
\qquad
5. Many commercial products are aqueous solutions.
a) A variety of orange juice contains 26 g of carbohydrates per $250-\mathrm{mL}$ serving. What is the concentration of carbohydrates in $\% \mathrm{~m} / \mathrm{V}$?

$$
\begin{aligned}
& \frac{26 \mathrm{~g}}{250 \mathrm{~mL}}=\frac{\mathrm{x} \mathrm{~g}}{100 \mathrm{~mL}} \\
& \mathrm{x}=10.4 \mathrm{~g} \text {, therefore } 10.4 \% \mathrm{~m} / \mathrm{V}
\end{aligned}
$$

The carbohydrate concentration is $10.4 \% \mathrm{~m} / V$.
b) A $500-\mathrm{mL}$ bottle of isopropyl alcohol, better known as rubbing alcohol, contains 350 mL of alcohol. What is the alcohol concentration of this solution in \% V/V?

$$
\begin{aligned}
& \frac{350 m L}{500 m L}=\frac{x}{100 m L} \\
& x=70 \mathrm{~mL} \text {, therefore } 70 \% \mathrm{~V} / \mathrm{V}
\end{aligned}
$$

The alcohol concentration is 70% V/V.
6. Other solutions, such as some medicines, are solids. According to the label on a medication for cramps and headaches, for example, each tablet contains 60 mg of caffeine and 340 mg of another substance. What is the caffeine content of each tablet, in $\% \mathrm{~m} / \mathrm{m}$?

The total mass of a tablet is $340 \mathrm{mg}+60 \mathrm{mg}=400 \mathrm{mg}$

$$
\frac{60 m g}{400 m g}=\frac{\mathrm{x}}{100 m g}
$$

$\mathrm{x}=15 \mathrm{~g}$, therefore $15 \% \mathrm{~m} / \mathrm{m}$

The caffeine concentration is $15 \% \mathrm{~m} / \mathrm{m}$.
\qquad
\qquad Date: \qquad
7. Janine has a sheepdog with big droopy ears. The veterinarian advised her to clean her dog's ears regularly. She noticed that the solution she uses contains $0.15 \% \mathrm{~m} / \mathrm{V}$ salicylic acid, which is one of the main ingredients in aspirin. What is the equivalent concentration in ppm?

$$
\begin{aligned}
& 0.15 \%(\mathrm{~m} / \mathrm{V}) \text { means } \frac{0.15 \mathrm{~g}}{100 \mathrm{~mL}}=\frac{0.15 \mathrm{~g}}{0.1 \mathrm{~L}} \\
& \frac{0.15 \mathrm{~g}}{0.1 \mathrm{~L}}=\frac{\mathrm{x}}{1 \mathrm{~L}}=\frac{1.5 \mathrm{~g}}{1 \mathrm{~L}}=\frac{1500 \mathrm{mg}}{1 \mathrm{~L}} \\
& 1 \mathrm{ppm}=1 \mathrm{mg} / \mathrm{L} \text {, therefore } 1500 \mathrm{mg} / \mathrm{L}=1500 \mathrm{ppm}
\end{aligned}
$$

The salicylic acid concentration is 1500 ppm.
8. A prospecting geologist has literally struck gold. He has discovered a river whose waters contain 0.1 ppm of gold. He believes that a worker could process 700 L of water a day to extract the gold it contains. The current market price of gold is $\$ 850$ an ounce (one ounce equals 28 g). What is the market value of one day's worth of extracted gold?

$$
1 \mathrm{ppm}=\frac{1 \mathrm{mg}}{1 L}, \text { therefore } 0.1 \mathrm{ppm}=\frac{0.1 \mathrm{mg}}{1 \mathrm{~L}}
$$

A person can process 700 L of water a day, so the mass collected is:
$\frac{0.1 \mathrm{mg}}{1 \mathrm{~L}} \times 700 \mathrm{~L}=70 \mathrm{mg}$
28 g of gold is worth $\$ 850$
$\frac{\$ 850}{28 g} \times 0.070 g=\$ 2.12$

The value of one day's worth of extracted gold is approximately $\$ 2.12$.

Name: \qquad Group: Date: \qquad
9. During a lab experiment, you are asked to prepare 200 mL of a $12 \% \mathrm{~m} / \mathrm{V}$ saltwater solution.
a) Perform the necessary calculations to prepare the solution.

$$
\begin{aligned}
& \text { A } 12 \% \mathrm{~m} / V \text { solution contains } \frac{12 \mathrm{~g}}{100 \mathrm{~mL}} \\
& \frac{12 \mathrm{~g}}{100 \mathrm{~mL}}=\frac{\mathrm{x}}{200 \mathrm{~mL}}
\end{aligned}
$$

I need 24 g of salt.
b) Describe the main steps in your procedure. Remember to identify the materials clearly.

1. Measure exactly 24 g of salt with a scale.
2. Pour the salt into a graduated cylinder or 200-mL volumetric flask containing approximately

100 mL of water.
3. Stir the mixture with a stirring rod until the salt is completely dissolved.
4. Add water to the cylinder or flask to obtain a total volume of 200 mL .
5. Stir again.
\qquad
10. An apple has a pH of 3 , while a carrot has a pH of 5 .
a) Which of these two foods is more acidic?

The apple is more acidic.
b) How many times more acidic is it?

It is 100 times more acidic.
11. What colour does neutral litmus paper turn if it is dipped in . . .
a) soapy water?

The litmus paper will turn blue.
b) rainwater?

The litmus paper will turn red.
c) distilled water?

The litmus paper will remain purple.
\qquad
\qquad Date: \qquad
12. John drew the table below to help himself memorize essential information about electrolytes.

As you can see, he wrote only the first letters of the words in certain columns. Complete John's table.

Type of electrolyte	Taste	$\mathbf{p H}$	Colour of litmus paper	Reaction to metal	Example
Acids	Sour	<7	Red	Yes	Lemon
Bases	Bitter	>7	Blue	No	Detergent
Salts	Salty	$=7$	Purple	No	Table salt

[__/6]
13. Classify the following substances by type of electrolyte (acid, base or salt).

| KOH | Base | $\mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2} \underline{\text { Salt }}$ | KF | Salt |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $\mathrm{H}_{2} \mathrm{SO}_{3}$ | Acid | HNO_{3} | Acid | $\mathrm{Na}_{2} \mathrm{CO}_{3}$ Salt |
| $\mathrm{Mg}(\mathrm{OH})_{2} \underline{\text { Base }}$ | $\mathrm{NH}_{4} \mathrm{OH}$ | $\underline{\text { Base }}$ | $\mathrm{Fe}(\mathrm{OH})_{3}$ Base | |

[
[/53]

